ASX Announcement

PORPHYRY COPPER POTENTIAL CONFIRMED IN ADDITION TO HIGH-GRADE GOLD AT THE DINAMARQUESA PROJECT

Genesis Minerals Limited (“Genesis”, ASX: GMD) is pleased to report that highly encouraging results continue to be returned from the porphyry hosted copper-gold-molybdenum mineralised system at the Company’s Dinamarquesa Project in northern Chile.

Extensive zones of copper-gold +/- molybdenum have been intersected in drilling, including:

DG11-10
- 13m @ 0.47% copper equivalent * (0.30% copper, 0.23 g/t gold)
- 50m @ 0.40% copper equivalent *(0.29 % copper, 0.15g/t gold)

DG 11-12
- 20m @ 0.47% copper equivalent * (0.29% copper, 0.19g/t gold)
- 12m @ 0.39% copper equivalent* (0.25% copper, 0.10g/t gold, 106ppm Mo)
- 46m @ 0.36% copper equivalent * (0.22% copper, 0.14g/t gold)

DG 11-13
- 33.3m @ 0.39% copper equivalent * (0.25% copper, 0.16g/t gold)
- 140.5m @ 0.40% copper equivalent *(0.24% copper, 0.13 g/t gold, 90ppm Mo)
- 40.1m @ 0.35% copper equivalent* (0.17% copper, 0.14g/t gold, 105ppm Mo)

DG 11-14
- 63.3m @ 0.45% copper equivalent * (0.27% copper, 0.24g/t gold)

DG 11-15
- 12m @ 0.40% copper equivalent * (0.23% copper, 0.14g/t gold)
- 15m @ 0.67% copper equivalent* (0.35% copper, 0.26g/t gold, 169ppm Mo)
- 12m @ 0.46% copper equivalent* (0.24% copper, 0.26g/t gold)

Further high-grade gold mineralisation has also been intersected, including:

DG11-10
- 1m @ 12.5g/t gold

In addition wider zones of gold mineralisation have been intersected in:

DG11-12
- 10m @ 1.7g/t gold

DG11-15
- 11.7m @ 1.0g/t gold

Results for the final three holes drilled during the recently completed program (DG 11-16 – DG 11-18) are pending.

Genesis’ Managing Director Michael Fowler commented: “The recent drilling has confirmed that there is significant potential to define a large porphyry copper system at the Dinamarquesa Project. Furthermore high-grade gold mineralisation continues to be returned. This high-grade system remains to be explored in detail. The program has significantly advanced our knowledge of the mineralised systems at Dinamarquesa and suitable follow-up work programs are now being developed.”
Recent drilling and interpretation has highlighted:

i. A previously unknown copper-gold-molybdenum mineralised quartz-feldspar porphyry intrusion has intruded the older tonalite porphyry and andesitic units (see Figure 2);

ii. The high-grade gold veins are probably part of a low sulphidation epithermal system;

iii. The presence of a porphyry copper system, developed with the intrusion of a quartz feldspar porphyry with strong biotite alteration; and

iv. The presence of quartz-pyrite and quartz-pyrite-chalcopyrite stockworks along with the increased occurrence of A, B and D type veinlets and the emergence of molybdenite in quartz veinlets, indicate clearly the upper levels of a porphyry system domain.

The newly defined quartz-feldspar porphyry forms a major exploration target for future work at Dinamarquesa.

Figure 1. Cross section - Dinamarquesa Project.

Figure 2 Schematic geological section highlighting quartz feldspar porphyry.
Figure 3 Gold Results DG11-10 to DG11-15 - Dinamarquesa Project.

Figure 4 Porphyry Results DG11-10 to DG11-15 - Dinamarquesa Project.
Background

The Dinamarquesa Project lies within a cluster of large Paleocene porphyry deposits including the Inca de Oro Deposit, 4km east (769.7Mt @ 0.32% copper and 0.09g/t gold, Pan Aust ASX Release 8 June 2011) and the Carmen Deposit 5km south, within the Inca de Oro porphyry belt.

Genesis Minerals Limited entered into an agreement in August 2010 with a private Chilean company to acquire a 100% interest in the Dinamarquesa Project in northern Chile. Limited previous wide spaced drilling had delineated a number of high grade gold structures. The Project is located within the highly mineralised Inca de Oro gold-copper belt which forms part of the well-endowed Palaeocene Porphyry belt of northern Chile.

The Project is located in the Atacama Desert in an area with excellent infrastructure about 850 km north of Santiago, 90 km north of the city of Copiapó and 75km east of the Pacific Ocean. The Project is 3km south west of the small town of Inca de Oro which is connected by a sealed highway between Copiapó in the south and Diego de Almagro in the north.

Figure 5. Location of the Dinamarquesa Project.

Michael Fowler
Managing Director

Further Information
Contact - Michael Fowler
+618 9322 6178 or mfowler@genesisminerals.com.au
Competent Person Statement

The information in this announcement was compiled by Michael Fowler, Genesis Minerals Limited’s Managing Director, who is a Member of The Australasian Institute of Mining and Metallurgy. Michael Fowler has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 JORC Code. Michael Fowler consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

Table 1 Significant mineralisation - DG11-10 to DG11-15.

<table>
<thead>
<tr>
<th>hole</th>
<th>Northing</th>
<th>Easting</th>
<th>mRL</th>
<th>Azi Dip</th>
<th>Depth (m)</th>
<th>From</th>
<th>To</th>
<th>Length (m)</th>
<th>Cu %</th>
<th>Au ppm</th>
<th>Mo ppm</th>
<th>CuEq</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG11-10</td>
<td>7,037,274</td>
<td>406,650</td>
<td>1730</td>
<td>337</td>
<td>-60</td>
<td>250</td>
<td>27</td>
<td>40</td>
<td>13</td>
<td>0.30</td>
<td>0.23</td>
<td>0.47</td>
<td>Gold Intersection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td>96</td>
<td>1</td>
<td>0.93</td>
<td>12.50</td>
<td>10.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113</td>
<td>163</td>
<td>50</td>
<td>0.29</td>
<td>0.15</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>DG11-12</td>
<td>7,037,182</td>
<td>406,582</td>
<td>1727</td>
<td>334</td>
<td>-55</td>
<td>270.4</td>
<td>29</td>
<td>49</td>
<td>20</td>
<td>0.29</td>
<td>0.19</td>
<td>55</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>70</td>
<td>12</td>
<td>0.25</td>
<td>0.09</td>
<td>101</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>126</td>
<td>46</td>
<td>0.21</td>
<td>0.13</td>
<td>73</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>169</td>
<td>179</td>
<td>10</td>
<td>0.12</td>
<td>0.09</td>
<td>267</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>200</td>
<td>10</td>
<td>0.15</td>
<td>1.70</td>
<td>112</td>
<td>1.47</td>
</tr>
<tr>
<td>DG11-13</td>
<td>7,037,230</td>
<td>406,616</td>
<td>1730</td>
<td>335</td>
<td>-70</td>
<td>250.10</td>
<td>5.7</td>
<td>39</td>
<td>33.3</td>
<td>0.25</td>
<td>0.16</td>
<td>37</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>182.5</td>
<td>140.5</td>
<td>0.24</td>
<td>0.13</td>
<td>89</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>210</td>
<td>250.1</td>
<td>40.1</td>
<td>0.17</td>
<td>0.14</td>
<td>105</td>
<td>0.35</td>
</tr>
<tr>
<td>DG11-14</td>
<td>7,037,173</td>
<td>406,504</td>
<td>1732</td>
<td>334</td>
<td>-55</td>
<td>250</td>
<td>13.6</td>
<td>77</td>
<td>63.4</td>
<td>0.27</td>
<td>0.24</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>DG11-15</td>
<td>7,037,270</td>
<td>406,680</td>
<td>1730</td>
<td>335</td>
<td>-70</td>
<td>250</td>
<td>47</td>
<td>59</td>
<td>12</td>
<td>0.23</td>
<td>0.14</td>
<td>92</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>80</td>
<td>15</td>
<td>0.35</td>
<td>0.26</td>
<td>169</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121.25</td>
<td>133</td>
<td>11.75</td>
<td>0.19</td>
<td>1.00</td>
<td>71</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td>177</td>
<td>12</td>
<td>0.24</td>
<td>0.26</td>
<td>44</td>
<td>0.46</td>
</tr>
</tbody>
</table>

* Copper Equivalent Calculation

Copper Equivalent (also Cu Eq*) calculation represents the total metal value for each metal, multiplied by the conversion factor, summed and expressed in equivalent copper percentage. These results are exploration results only and no allowance is made for metallurgical recoveries. However it is the Company’s opinion that elements considered here have a reasonable potential to be recovered as evidenced in similar porphyry hosted mines in Chile. Copper equivalent conversion factors and long-term price assumptions used follow:

Copper Equivalent Formula = Cu % + (Mo(ppm) x 0.00075) + (Au(ppm) x 0.73)

Price Assumptions- Cu (US$2.00/lb), Mo (US$15/lb), Au (US$1000/oz)

- Final assay results from ½ HQ diamond core
- Analysis completed by ALS laboratory in Coquimbo, Chile.
- All samples were analysed for gold by fire assay, total copper (4acid digest with AAS finish), molybdenum (4 acid digest with AAS finish).
- Reference standards, duplicate and blank samples were routinely submitted and were within acceptable limits based on current data.

Drill hole collar position surveyed - PSAD56 Zone 19S by GPS and down hole survey by gyroscope by Comprobe